Home
Class 12
MATHS
vec aa n d vec b are two unit vectors t...

` vec aa n d vec b` are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to ` vec a , vec ba n d vec axx vec b` is a.`1/(sqrt(2))( vec a+ vec b+ vec axx vec b)` b. `1/2( vec axx vec b+ vec a+ vec b)` c. `1/(sqrt(3))( vec a+ vec b+ vec axx vec b)` d. `1/3( vec a+ vec b+ vec axx vec b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a and vec b are two unit vectors that are mutually perpendicular.A unit vector that is equally inclined to vec a.vec b and vec a xxvec b is :

If vec a,vec b,vec c are mutually perpendicular vectors of equal magnitude,show the vectors vec a+vec b+vec c is equally inclined to vec a,vec b and vec c.

If vec a and vec b and vec c are mutually perpendicular unit vectors,write the value of |vec a+vec b+vec c|

vec a,vec b,vec c are mutually perpendicular unit vectors and vec d is a unit vector equally inclined to each other of vec a,vec b and vec c at an angle of 60^(@) then |vec a+vec b+vec c+vec d|^(2)=

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these

If vec a and vec b are orthogonal unit vectors, then for a vector vec r noncoplanar with vec a and vec b , vector rxxa is equal to a. [ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a) b. [ vec r vec a vec b]( vec a+ vec b) c. [ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b d. none of these

If vec a,vec b,vec c are mutually perpendicular unit vectors,find |2vec a+vec b+vec c|

Show that ( vec axx vec b)^2=| vec a|^2| vec b|^2-( vec adot vec b)^2=| [vec a.vec a, vec a.vec b],[ vec a.vec b, vec b.vec b]|

For any two vectors vec aa n d vec b , prove that | vec a+ vec b|lt=| vec a|+| vec b| (ii) | vec a- vec b|lt=| vec a|+| vec b| (iii) | vec a- vec b|geq| vec a|-| vec b|

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these