Home
Class 12
MATHS
[" A curve is represented parametrically...

[" A curve is represented parametrically by the equations "x=t+e^(" at ")" and "y=-t+e^(" at ")],[" when "t in R" and "a>0" .If the curve touches the axis of "x" at the point "A" ,then the "],[" coordinates of the point "A" are "],[[" (1) "(1,0)," (1) "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

A curve is represented parametrically by the equations x=t+e^(at) and y=-t +e^(at), t in R and a gt 0 . If the curve touches the axis of x at the point A, then the coordinates of the point A are

A curve is represented paramtrically by the equations x=e^(t)cost and y=e^(t)sint where t is a parameter. Then The value of (d^(2)y)/(dx^(2)) at the point where t=0 is

A curve is represented paramtrically by the equations x=e^(t)cost and y=e^(t)sint where t is a parameter. Then The value of (d^(2)y)/(dx^(2)) at the point where t=0 is

A curve is represented paramtrically by the equations x=e^(t)cost and y=e^(t)sint where t is a parameter. Then The value of (d^(2)y)/(dx^(2)) at the point where t=0 is

A curve is represented paramtrically by the equations x=e^(t)cost and y=e^(t)sint where t is a parameter. Then The value of (d^(2)y)/(dx^(2)) at the point where t=0 is

A curve is represented parametrically by the equations x=e^(t)cost andy=e^(t) sin t, where t is a parameter. Then, If F(t)=int(x+y)dt, then the value of F((pi)/(2))-F(0) is

A curve is represented parametrically by the equations x=e^(1)cost andy=e^(1) sin t, where t is a parameter. Then, If F(t)=int(x+y)dt, then the value of F((pi)/(2))-F(0) is

A curve is represented parametrically by the equations x=e^(1)cost andy=e^(1) sin t, where t is a parameter. Then, If F(t)=int(x+y)dt, then the value of F((pi)/(2))-F(0) is