Home
Class 11
MATHS
y=(1)/(sqrt(x))...

y=(1)/(sqrt(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of y=(1)/(sqrt(|x|-x)) is :

y=(sqrt(x)+(1)/(sqrt(x)))(1+x+x^(2))

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx) at x=1 is

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx)=

If y= (sqrt( x) +(1)/(sqrt(x)) ) ^(5) , then (dy)/(dx) =

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y = sqrt(x) + (1)/(sqrt(x)) prove that 2x(dy)/(dx) + y = 2sqrt(x)

If y=sqrt(x)+(1)/(sqrt(x))," then: "2x(dy)/(dx)+y=

If y =sqrt(x) + (1)/(sqrt(x)) , "then" 2 x . (dy)/(dx) is equal to