Home
Class 12
MATHS
[" Les S be the set of real values of pa...

[" Les S be the set of real values of parameter "lambda" for which the function "f(x)=2x^(3)-3(2+lambda)x^(2)+12ix" has "],[" exactly one local maxima and exactly one local minima.Then value of "lambda" may not be possible "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S be the set of real values of parameter lamda for which the equation f(x) = 2x^(3)-3(2+lamda)x^(2)+12lamda x has exactly one local maximum and exactly one local minimum. Then S is a subset of

Let S be the set of real values of parameter lamda for which the equation f(x) = 2x^(3)-3(2+lamda)x^(2)+12lamda x has exactly one local maximum and exactly one local minimum. Then S is a subset of

Let S be the set of real values of parameter lamda for which the equation f(x) = 2x^(3)-3(2+lamda)x^(2)+12lamda x has exactly one local maximum and exactly one local minimum. Then S is a subset of

Let S be the set of real values of parameter lamda for which the equation f(x) = 2x^(3)-3(2+lamda)x^(2)+12lamda x has exactly one local maximum and exactly one local minimum. Then S is a subset of

The set of all real value of lambda for which the functio f(x) = (1-cos^(2)x) . (lambda + sinx) , xe(-(pi)/(2) , (pi)/(2)) has exactly one maxina and exactly one minima is

Find the sum of all possible integral values of in [1,100] for which the function f(x)=2x^(3)-3(2+alpha)x^(2) has exactly one local maximum and one local minimum.

Find the sum of all possible integral values of in [1,100] for which the function f(x)=2x^(3)-3(2+alpha)x^(2) has exactly one local maximum and one local minimum.

Let f(x)=2x^(3)-3(2+p)x^(2)+12px If f(x) has exactly one local maxima and one local minima, then the number of integral values of p is ....

Let f(x)=2x^(3)-3(2+p)x^(2)+12px+ln(16-p^(2)) If f(x) has exactly one local maxima and one local minima, then the number of integral values of p is