Home
Class 11
MATHS
Let a in (0,1] satisfies the equation a^...

Let `a in (0,1]` satisfies the equation `a^(2008)-2a+1=0` and `S=1+a+a^2+.....+a^2007` Then sum of all possible values of S is a. `2010` b. `2009` c. `2008` d. `2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a satisfies the equation a^(2017)-2a+1=0 and S=1+a+a^(2)+....+a^(2016). then posible value(s) of S is/are

Let a in (0,1) satisfies the equation a^(2008)-2a+1=0v a l u e s(s)toS is 2010 b. 2009 c. 2008 d. 2

Let matrix A=[[3,2],[1,1]] satisfies the equation A^2+aA+bI=0 then the value of |a+b| =

Integers a,b,c satisfy a+b-c=1 and a^(2)+b^(2)-c^(2)=-1 What is the sum of all possible values of a^(2)+b^(2)+c^(2)?

Integers a, b, c satisfy a + b - c = 1 and a^2 + b^2 - c^2 = -1 . What is the sum of all possible values of a^(2) + b^(2) + c^(2) ?

The value of x satisfying the equation log_(2)(x^(2)-2x+5)=2 is "(a) 1 (b) 0 (c) -1 (d) 2 "

Let r ,s ,a n dt be the roots of equation 8x^3+1001 x+2008=0. Then find the value of .

Let P-=(a, 0), Q-=(-1, 0) and R-=(2, 0) are three given points. If the locus of the point S satisfying the reaction SQ^(2)+SR^(2)=2SP^(2) is 2x+3=0 . Then the sum of all possible values of a is

Let a>0, a!=0 . Then the set S of all positive real numbers b satisfying (1+a^2)(1+b^2)=4ab is