Home
Class 12
MATHS
The volume of he parallelepiped whose...

The volume of he parallelepiped whose sides are given by ` vec O A=2i-2, j , vec O B=i+j-ka n d vec O C=3i-k` is a.`4/13` b. `4` c. `2/7` d. `2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of a parallelogram whose adjacent sides are determined by the vectors vec a=i+2j+3k and vec b=-3i-2j+k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=11hat i,vec b=2hat j,vec c=13hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k vec a=11 hat i , vec b=2 hat j- hat k , vec c=13 hat k vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i+3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j+2hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i-3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j-2hat k

Find the altitude of a parallelepiped whose three coterminous edtges are vectors vec A= hat i+ hat j+ hat k , vec B=2 hat i+4 hat j- hat ka n d vec C= hat i+ hat j+3 hat kw i t h vec Aa n d vec B as the sides of the base of the parallepiped.

Let vec a=2 hat i-3 hat j= vec b= hat i+ hat j- hat k and hat c=3 hat i- hat k , then the volume of parallelepiped whose three coterminous edges are vec ax vec b, vec bx vec c and vec cx vec a , is 9 (2) 4 (3) 16 (4) 14 (5) 7

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

vec a = i + j + k, vec b = i-j + k, vec c = 2i + 3j-k then (vec aXvec b) Xvec c =