Home
Class 12
MATHS
Let vec A be a vector parallel to the ...

Let ` vec A` be a vector parallel to the line of intersection of planes `P_1a n dP_2dot` Plane `P_1` is parallel to vectors `2 hat j+3 hat ka n d4 hat j-3ka n dP_2` is parallel to ` hat j- hat ka n d3 hat i+3 hat jdot` Then the angle betweenvector ` vec A` and a given vector `2 hat i+ hat j-2 hat k` is a.`pi//2` b. `pi//4` c. `pi//6` d. `3pi//4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be vector parallel to line of intersection of planes P_1 and P_2 . Plane P_1 is parallel to the vectors 2hat(j)+3hat(k) and 4hat(j)-3hat(k) and that P_2 is parallel to hat(j)-hat(k) and 3hat(i)+3hat(j) , then the angle between vector A and a given vector 2hat(i)+hat(j)-2hat(k) is

A vector parallel to the line of intersection of the planes vec r=dot(3 hat i- hat j+ hat k)=1\ a n d\ vec rdot(( hat i+4 hat j-2 hat k)=2 is a. -2 hat i+7 hat j+13 hat k b. 2 hat i+7 hat j-13 hat k c. -2i-7j+13 k d. 2i+7j+13 k

A non zero vector vec a is parallel to the line of intersection of the plane determined by the vectors hat i,hat i+hat j and the plane determined by by by the vectors hat i-hat j,hat i+hat k. The angle between vec a and hat i-2hat j+2hat k can be

Find all vectors of magnitude 10sqrt(3) that are perpendicular to the plane hat i+2 hat j+ hat k\ a n d- hat i+3 hat j+4 hat kdot

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

If in parallelogram ABCD, diagonal vectors are vec A C=2 hat i+3 hat j+4 hat k and vec B D=-6 hat i+7 hat j-2 hat k , then find the adjacent side vectors vec A B and vec A D

Prove that the vectors vec A = 4 hat i + 3 hat j + hat k and vec B = 12 hat i + 9 hat j + 3 hat k are parallel to each other.

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

Find a unit vector parallel to the resultant of vectors vec A = 3 hat I + 3 hat j - 2 hat k and vec B= hat i- 5 hat j + hat k .

The angle between the vectors hat i -hat j and hat j - hat k is (A) - pi/3 (B) 0 (C) pi/3 (D) 2 pi/3