Home
Class 13
MATHS
" Prove that: "cos A cos2A cos2^(2)A cos...

" Prove that: "cos A cos2A cos2^(2)A cos2^(3)A...cos2^(n-1)A=(sin2^(n)A)/(2^(n)sin A)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos A cos 2A cos 2^(2) A cos 2^(3)A....cos 2^(n-1) A=(sin 2^(n) A)/(2^(n) sin A)

Prove that: cos A cos 2A cos 2^(2)A cos 2^(3)A….....cos 2^(n-1)A=("sin" 2^(n)A)/(2^(n)"sin"A) .

Prove that : cos A cos 2A cos 2^2 A cos 2^3 A........ cos 2^(n-1) A= (sin 2^n A)/(2^n sinA) .

cos A.cos2A.cos2^(^^)2A*cos2^(^^)3A cos2^(^^)nA=sin(2^(^^)nA)/2^(^^)n sin A

Using induction,prove that cos theta cos2 theta cos2^(2)theta...cos2^(n-1)theta=(sin2^(n)theta)/(2^(n)sin theta)

cos x*cos2x*cos4x......cos(2^(n-1)x)=(sin2^(n)x)/(2^(n)sin x)AA n in N

Using induction, prove that, costhetacos2thetacos2^(2)theta . . .cos2^(n)theta=(sin2^(n+1)theta)/(2^(n+1)sintheta) .

Prove that (1)sin2A=2sin A cos A(2)cos2A=cos^(2)A-sin^(2)A

Prove that cos theta cos 2theta cos2^2 theta … cos 2^(n-1) theta = (sin2^n theta)/(2^n.sin theta) , for all n in N