Home
Class 12
MATHS
If S(n)=sum(k=1)^n k/(k^4+1/4), then (2...

If `S(n)=sum_(k=1)^n k/(k^4+1/4)`, then `(221S(10))/10` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

Given S_(n)=sum_(k=1)^(n)(k)/((2n-2k+1)(2n-k+1)) and T_(n)=sum_(k=1)^(n)(1)/(k) then (T_(n))/(S_(n)) is equal to

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

S_(n)=sum_(n=1)^(n)(n)/(1+n^(2)+n^(4)) then S_(10)S_(20)

The limit of (1)/(n ^(4)) sum _(k =1) ^(n) k (k +2) (k +4) as n to oo is equal to (1)/(lamda), then lamda =

The limit of (1)/(n ^(4)) sum _(k =1) ^(n) k (k +2) (k +4) as n to oo is equal to (1)/(lamda), then lamda =

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

If Delta_k=|(1,n,n), (2k, n^2+n+1, n^2+n), (2k-1, n^2, n^2+n+1)| and sum_(k=1)^n Delta_k = 56, then n is equal to (i)4 (ii)6 (iii)8 (iv)none