Home
Class 12
MATHS
" Suppose "I(1)=int(0)^(2)cos(pi sin^(2)...

" Suppose "I_(1)=int_(0)^(2)cos(pi sin^(2)x)dx,I_(2)=int_(0)^(2)cos(2 pi sin^(2)x)dx" and "I_(3)=int_(0)^(2)cos(pi sin x)dx" .Then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose _((pi)/(2))cos(pi sin^(2)x)dx and I_(2)int_(0)^(3)cos(2 pi sin^(2)x)dx and I_(3)=int_(0)^((pi)/(2))cos(pi sin x)dx, then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

If I_(1)= int_(0)^(3pi) f( sin^(2) x)dx and I_(2)= int_(0)^(pi) f(sin^(2)x)dx then

If I_(1)=int_(0)^(pi//2)log (sin x)dx and I_(2)=int_(0)^(pi//2)log (sin 2x)dx , then

u,=int_(0)^((pi)/(2))cos((2 pi)/(3)sin^(2)x)dx and v,=int_(0)^((pi)/(2))cos((pi)/(3)sin x)dx

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

I=int_(0)^(2 pi)cos^(-1)(cos x)dx