Home
Class 12
MATHS
Let vec r , vec a , vec ba n d vec c be...

Let ` vec r , vec a , vec ba n d vec c` be four nonzero vectors such that ` vec rdot vec a=0,| vec rxx vec b|=| vec r|| vec b|a n d| vec rxx vec c|=| vec r|| vec c|dot` Then `[abc]` is equal to `|a||b||c|` b. `-|a||b||c|` c. `0` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec r , vec a , vec b and vec c be four non zero vectors such that vec r.vec a = 0, |vec r xx vecb|=|vecr||vecb| " and " |vec r xx vec c | = |vec r||vec c | . Then [abc] is equal to

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

If vec a,vec b, and vec c are three vectors such that vec a xxvec b=vec c,vec b xxvec c=vec a,vec c xxvec a=vec b then prove that |vec a|=|vec b|=|vec c|

Let vec a, vec b, vec c be three nonzero vectors such that vec a + vec b + vec c = vec 0 and lambdavec b xxvec a + vec b xxvec c + vec c xxvec a = 0 then lambda is

If vec a, vec b, vec c are three non-coplanar vectors such that vec a + vec b + vec c = alphavec d and vec b + vec c + vec d = betavec a then vec a + vec b + vec c + vec d is equal to

If vec a, vec b, vec c are three vectors such that | vec b | = | vec c | then {(vec a + vec b) xx (vec a + vec c)} xx {(vec b xxvec c)} * (vec b + vec c) =

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If vec a,vec b,vec c and vec d are distinct vectors such that vec a xxvec c=vec b xxvec d and vec a xxvec b=vec c xxvec d prove that (vec a-vec d)vec b-vec c!=0

vec a,vec b,vec c are three vectors, such that vec a+vec b+vec c=0 , |vec a|=1,|vec b|=2,|vec c|=3 , |vec a.vec b+vec b.vec c+vec c.vec a| is equal to