Home
Class 12
MATHS
cos[tan^(-1){sin(cot^(-1)x)}]" is equal ...

cos[tan^(-1){sin(cot^(-1)x)}]" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these

Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

If x gt 0 , then the value of sin[cot^(-1)cos(tan^(-1)x)] is equal to -

If x gt 0 , then the value of sin[cot^(-1)cos(tan^(-1)x)] is equal to -

The value of cos [tan^-1 {sin (cot^-1 x)}] is

If x gt 0 then the value of sin [cot ^(-1) cos( tan^(-1)x)] is equal to-

sin(cot^(-1)(tan(cos^(-1)x))) is equal to a) x b) sqrt(1-x^2) c) 1/x d) none of these

sin(cot^(-1)(tan(cos^(-1)x))) is equal to a x b sqrt(1-x^(2)) c) (1)/(x) d) none of these