Home
Class 12
MATHS
int(e^(-1))^(t^(2))|(log x)/(x)|dx=...

int_(e^(-1))^(t^(2))|(log x)/(x)|dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(e^(-1))^(e^(2))|(ln x)/(x)|dx

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

int_(1)^(e)(1+log x)/(x)dx=

int_(e )^(e^(2))log x dx =

int_((1)/(e))^(1)|(ln x)/(x)|dx=

int_(1)^(2)(e^(x)(1+x log x))/(x) dx=

" (2) "int_(1)^(2)(log e^(x))/(x^(2))dx

"int_(1)^(e)(1+log x)/(x)dx=

int_(1)^(2) (log_(e) x)/(x^(2)) dx

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))