Home
Class 12
MATHS
[" Q."13[" The transformed equation of "...

[" Q."13[" The transformed equation of "],[x^(4)+4x^(3)+2x^(2)-4x-2=0," by eliminating "],[" second term is "],[" 1) "y^(4)-24y^(2)+65y-55=0],[" 2) "y^(5)-7y^(3)+12y^(2)-7y=0],[" 3) "quad y^(4)-4y^(2)+1=0],[" () "x^(3)-2y+1=0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2) - 1 = 0, y^(2) + 4y + 3 = 0

(i) x^(2) - 4x + 3 = 0 (ii) y^(2) - 7y+10 = 0

If the origin is shifted to the point (1,2) then what will be the transform equation of the following equations, it is given that the new and old axes are parallel : (i) x^(2)+y^(2)-2x-4y=0 (ii) 2x^(2)-y^(2)-4x+4y-3=0 (iii) x^(2)+xy-2y^(2)-4x+7y-5=0 (iv) 3x+y=6

Find the equation of radical axis of the circles x^(2)+y^(2)-3x+5y-7=0 and 2x^(2)+2y^(2)-4x+8y-13=0 .

Find the equation of radical axis of the circles x^(2)+y^(2)-3x+5y-7=0 and 2x^(2)+2y^(2)-4x+8y-13=0 .

Find the equation of radical axis of the circles x^(2)+y^(2)-3x+5y-7=0 and 2x^(2)+2y^(2)-4x+8y-13=0 .

3x-4y=-7,5x-2y=0

The equation of the image of the circle x^(2)+y^(2)+16x-24y+183=0 in the mirror 4x+7y+13=0 is x^(2)+y^(2)+32x-4y+235=0x^(2)+y^(2)+32x+4y-235=0x^(2)+y^(2)+32x-4y-235=0x^(2)+y^(2)+32x+4y-235=0x^(2)+y^(2)+32x+4y+235=0

Identify the type of conic section for each of the equations 1. 2x^(2) -y^(2) = 7 2. 3x^(2) +3 y^(2) -4x + 3y + 10 =0 3. 3x^(2) + 2y^(2) = 14 4. x^(2) + y^(2) + x-y=0 5. 11x^(2) -25y^(2) -44x + 50y - 256 =0 6. y^(2) + 4x + 3y + 4=0