Home
Class 12
MATHS
" If "xy=alpha e^(t)+be^(-t)" satisfies ...

" If "xy=alpha e^(t)+be^(-t)" satisfies the equation "Ay''+By'-xy," then "|A-B|" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If xy = ae^(x) + be^(-x) satisfies the equation Axy'' +By' = xy , then |A-B| is__________.

If xy = ae^(x) + be^(-x) satisfies the equation Axy'' +By' = xy , then |A-B| is__________.

If y=e^(4x)+2e^(-x) satisfis the differential equation y_3+Ay_1+By=0 then

Show that the function y=f(x) defined by the parametric equations x=e^(t)sint,y=e^(t).cos(t), satisfies the relation y''(x+y)^(2)=2(xy'-y)

Factoris the expression. - xy - ay

Show that the function y=f(x) defined by the parametric equations x=e^(t)sin(t),y=e^(t).cos(t), satisfies the relation y''(x+y)^(2)=2(xy'-y)

Show that the function y=f(x) defined by the parametric equations x=e^(t)sin(t),y=e^(t).cos(t), satisfies the relation y''(x+y)^(2)=2(xy'-y)

If y(t) satisfies the differential equation y'(t)+2y(t)=2e^(-2t),y(0)=2 then y(1) equals