Home
Class 12
MATHS
vec u , vec va n d vec w are three non-c...

` vec u , vec va n d vec w` are three non-coplanar unit vecrtors anf `alpha,betaa n dgamma` are the angles between` vec ua n d vec v , vec va n d vec w ,a n d vec wa n d vec u ,` respectively, and ` vec x , vec ya n d vec z` are unit vectors along the bisectors of the angles `alpha,betaa n dgamma` , respectively. Prove that `[ vec xxx vec y vec yxx vec z vec zxx vec x]=1/(16)[ vec u vec v vec w]^2sec^2alpha/2sec^2beta/2sec^2gamma/2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If hat u , hat v , hat w be three non-coplanar unit vectors with angles between hat u& hat v is alpha between hat v& hat w is beta and between hat w& hat u is gamma . If vec a , vec b , vec c are the unit vectors along angle bisectors of alpha,beta,gamma respectively, then prove that [ vec ax vec b vec bx vec c vec cx vec a]=1/(16)[ hat u hat v hat w]^2sec^2(alpha/2)sec^2(beta/2)sec^2(gamma/2)

Find the angle between two vectors vec a\ a n d\ vec b with magnitudes 1\ a n d\ 2 respectively and when | vec axx vec b|=sqrt(3)dot

If vec u,vec v and vec w are three non-copolanar vectors,then prove that (vec u+vec v-vec w)*(vec u-vec v)xx(vec v-vec w)=vec u*vec v*xxvec w

The angle between vectors (vec(M)xx vec(N)) and (vec(N)xx vec(M)) is

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

If vec a,vec b,vec c, and vec d are four non-coplanar unit vector such that vec d make equal angles with all the three vectors vec a,vec b and angles prove that [vec dvec avec b]=[vec dvec cvec b]=[vec dvec cvec a]

If vec a\ a n d\ vec b are unit vectors such that vec axx vec b is also a unit vector, find the angle between vec a\ a n d\ vec bdot

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

Prove that if [ vec l vec m vec n] are three non-coplanar vectors, then [ vec l vec m vec n]( vec axx vec b)=| vec ldot vec a vec ldot vec b vec l vec mdot vec a vec mdot vec b vec m vec ndot vec a vec ndot vec b vec n| .

If vec v and vec w are two mutually perpendicular unit vectors and vec u=av+bw, where a and b are non zero real numbers,then the angle between vec u and vec w is