Home
Class 11
MATHS
[" Af "f(x)=1+2sin x+3cos^(2)x,0<=x<=(2 ...

[" Af "f(x)=1+2sin x+3cos^(2)x,0<=x<=(2 pi)/(3)" is "],[[" (a) Minimum at "x=pi/2," (b) Maximum at "x=sin^(-1)(1/sqrt(3))],[" (c) Minimum at "x=pi/6," (d) Maximum at "sin^(-1)(1/6)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1+2sin x+3cos^(2)x,0<=x<=(2 pi)/(3)

Let f(x)=1+2sin x+2cos^(2)x,0<=x<=(pi)/(2) then

If f(x)=|(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x)| then the maximum value of f(x) is

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

" If "f(x)=|[x,sin x,cos x],[x^(2),tan x,-x^(3)],[2x,sin2x,5x]|" ,then "lim_(x rarr0)(f'(x))/(x)=

If f'(x)=3x^(2)sin x-x cos x x!=0 f(0)=0 then the value of f((1)/(pi)) is

If f'(x)=3x^(2)sin x-x cos x ,x!=0 f(0)=0 then the value of f((1)/(pi)) is

If f(x)=[[1+sin^2x,cos^2x,4sin2x],[sin^2x,1+cos^2x,4sin2x],[sin^2x,cos^2x,1+4sin2x]] what is the maximum value of f(x).

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

sin^(2)x+2sin x cos x-3cos^(2)x=0 if