Home
Class 11
MATHS
If 1, a1, a2,....,a(n-1) are the nth roo...

If `1, a_1, a_2,....,a_(n-1)` are the nth roots of unity then prove that `(1-a_1)(1-a_2)(1-a_3)=(1-a_(n-1))=n`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : 1+a_1+a_2+…+a_(n-1) =0.

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

If roots of an equation x^n-1=0a r e1,a_1,a_2,..... a_(n-1), then the value of (1-a_1)(1-a_2)(1-a_3)(1-a_(n-1)) will be n b. n^2 c. n^n d. 0

If roots of an equation x^n-1=0a r e1,a_1,a_2,..... a_(n-1), then the value of (1-a_1)(1-a_2)(1-a_3)(1-a_(n-1)) will be n b. n^2 c. n^n d. 0

If roots of an equation x^n-1=0 are 1,a_1,a_2,........,a_(n-1) then the value of (1-a_1)(1-a_2)(1-a_3)........(1-a_(n-1)) will be (a) n (b) n^2 (c) n^n (d) 0

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_0, a_1 , a_2 …..a_n are binomial coefficients then (1 + a_1/a_0)(1 +a_2/a_1) …………….(1 + (a_n)/(a_(n-1)) ) =