Home
Class 12
MATHS
The condition for equations vec rxx ...

The condition for equations ` vec rxx vec a= vec ba n d vec rxx vec c= vec d` to be consistent is ` vec bdot vec c= vec adot vec d` b. ` vec adot vec b= vec cdot vec d` c. ` vec bdot vec c+ vec adot vec d=0` d. ` vec adot vec b+ vec cdot vec d=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

Line vec r= vec a+lambda vec b will not meet the plane vec rdot vec n=q , if a. vec bdot vec n=0, vec adot vec n=q b. vec bdot vec n!=0, vec adot vec n!=q c. vec bdot vec n=0, vec adot vec n!=q d. vec bdot vec n!=0, vec adot vec n=q

If vec a , vec b , vec c are three given non-coplanar vectors and any arbitrary vector vec r in space, where Delta1=| vec rdot vec a vec bdot vec a vec cdot vec a vec rdot vec b vec bdot vec b vec cdot vec b vec rdot vec c vec bdot vec c vec cdot vec c| , Delta2=| vec adot vec a vec rdot vec a vec cdot vec a vec adot vec b vec rdot vec b vec cdot vec b vec adot vec c vec rdot vec c vec cdot vec c| Delta3=| vec adot vec a vec bdot vec a vec rdot vec a vec adot vec b vec bdot vec b vec rdot vec b vec adot vec c vec bdot vec c vec rdot vec c| , Delta =| vec adot vec a vec bdot vec a vec cdot vec a vec adot vec b vec bdot vec b vec cdot vec b vec adot vec c vec bdot vec c vec cdot vec c| , then prove that vec r=(Delta1)/ Deltavec a+(Delta2)/Delta vec b+(Delta3)/Delta vec c .

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If vec rdot vec a=0, vec rdot vec b=1a n d[ vec r vec a vec b]=1, vec adot vec b!=0,( vec adot vec b)^2-=| vec a|^2| vec b|^2=1, then find vec r in terms of vec aa n d vec bdot

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

Three vectors vec a , vec b , vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a , if | vec a|=1, | vec b|=4 a n d | vec c|=2.

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k , then find the vaue of | vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec a vec bdot vec a vec cdot vec a vec cdot vec a vec cdot vec a| .