Home
Class 12
MATHS
If vec rdot vec a= vec rdot vec b= vec ...

If ` vec rdot vec a= vec rdot vec b= vec rdot vec c=1/2` or some nonzero vector ` vec r ,` then the area of the triangle whose vertices are `A( vec a),B( vec b)a n dC( vec c)i s( vec a , vec b , vec c` are non-coplanar`)` `|[ vec a vec b vec c]|` b. `| vec r|` c. `|[ vec a vec b vec c] vec r|` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

Let vec a, vec b and vec c, are non-coplianar vectors such that [(vec a xxvec b) * vec c] = | vec a || vec b || vec c | then

[vec a + vec b, vec b + vec r * vec cvec c + vec a] = 2 [vec with bvec c]

If vec a is a non-zero vector and vec a * vec b = vec a * vec c, vec a xxvec b = vec a xxvec c, then

Show that vectors vec a,vec b,vec c are coplanar if vec a+vec b,vec b+vec c,vec c+vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

If vec a, vec b, vec c are coplanar vectors, then | vec a, vec b, vec cvec b, vec c, vec avec b, vec a, vec b] | = vec a

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot