Home
Class 9
MATHS
D , E , और F क्रमश : त्रिभुज ABC क...

D , E , और F क्रमश : त्रिभुज ABC की भुजाओ BC , CA और AB के मध्य - बिंदु है । दर्शाइए कि
`(i) BDEF` एक समांतर चतुर्भुज है `(ii) ar (DEF)=(1)/(4) ar (ABC)`
`(iii) ar (BDEF)=(1)/(2)ar(ABC)`

Promotional Banner

Similar Questions

Explore conceptually related problems

D,E and F are respectively the mid-points of the sides BC, CA and AB of triangle ABC show that (i) BDEF is a parallelogram. (ii) ar (DEF) = 1/4 ar (ABC) (iii) ar (BDEF) = 1/2 ar (ABC)

D, E, F are the midpoints of the sides BC, CA and AB respectively of triangle ABC. Prove that (i) BDEF is a ||gm, (ii) ar(triangleDEF)=(1)/(4) ar(triangleABC) and (iii) ar("||gm BDEF") = (1)/(2)ar(triangleABC)

In the figure, ΔABC, D, E, F are the midpoints of sides BC, CA and AB respectively. Show that (i) BDEF is a parallelogram (ii) ar(DeltaDEF)=1/4ar(DeltaABC) (iii) ar(BDEF)=1/2ar(DeltaABC)

In the figure, ΔABC, D, E, F are the midpoints of sides BC, CA and AB respectively. Show that (i) BDEF is a parallelogram (ii) ar(DeltaDEF)=1/4ar(DeltaABC) (iii) ar(BDEF)=1/2ar(DeltaABC)

In the figure, ΔABC, D, E, F are the midpoints of sides BC, CA and AB respectively. Show that (i) BDEF is a parallelogram (ii) ar(DeltaDEF)=1/4ar(DeltaABC) (iii) ar(BDEF)=1/2ar(DeltaABC)

In a ABC,E is the mid-point of median AD Show that ar(BED)=(1)/(4) ar (ABC)

In fig, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that: (i) ar(BDE)= 1/4 ​ ar(ABC) (ii) ar(BDE)= 1/2 ​ ar(BAE)

In a triangle ABC,E is the mid-point of median AD.Show that quad ar(BED)=(1)/(4)ar(ABC)

In a ABC,/_ABC=135o. Prove that AC^(2)=AB^(2)+BC^(2)+4ar(ABC)