Home
Class 12
MATHS
If vec a and vec b are orthogonal uni...

If ` vec a` and `vec b` are orthogonal unit vectors, then for a vector ` vec r` noncoplanar with ` vec a` and `vec b` , vector `rxxa` is equal to a. `[ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a)` b. `[ vec r vec a vec b]( vec a+ vec b)` c. `[ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a + vec b, vec b + vec r * vec cvec c + vec a] = 2 [vec with bvec c]

If vec a, vec b, vec c are coplanar vectors, then | vec a, vec b, vec cvec b, vec c, vec avec b, vec a, vec b] | = vec a

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

The vector component of vec b perpendicular to vec a is ( vec bdot vec c) vec a b. ( vec axx( vec bxx vec a))/(| vec a|^2) c. vec axx( vec bxx vec a) d. none of these

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

vec r xxvec a = vec b xxvec a, vec r xxvec b = vec a xxvec b, vec a! = 0, vec b! = 0, vec b! = lambdavec a, vec a is not perpendicular to vec b then vec r is

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

If the vectors vec a, vec b, vec c are coplanar, then the value of | (vec a, vec b, vec c), (vec a * vec a, vec a * vec b, vec a * vec c), (vec b * vec a, vec b * vec b, vecb * vec c) | =

If vec a, vec b, vec c are unit vectors such that vec a + vec b + vec c = vec 0 find the value of vec a * vec b + vec b * vec c + vec c * vec avec a * vec b + vec b * vec c + vec c * vec a

If vec a, vec b, vec c are three vectors such that | vec b | = | vec c | then {(vec a + vec b) xx (vec a + vec c)} xx {(vec b xxvec c)} * (vec b + vec c) =