Home
Class 12
MATHS
If vec a , vec b , vec ca n d vec d are...

If ` vec a , vec b , vec ca n d vec d` are distinct vectors such that ` vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d ,` prove that `( vec a- vec d)dot (vec b- vec c)!=0,`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a, vec b, vec c, vec d are four distinct vectors satisfying the conditions vec a xxvec b = vec c xxvec d and vec a xxvec c = vec b xxvec d then prov that vec a * vec b + vec c.vec d! = vec a * vec c + vec b.vec d

If vec a xxvec b = vec c xxvec d and vec a xxvec c = vec b xxvec d then show that vec a-vec d is parallel to vec b-vec c

36. If vec a, vec b, vec c and vec d are unit vectors such that (vec a xx vec b) .vec c xx vec d = 1 and vec a.vec c = 1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c, vec d are non -coplanar c) vec b, vecd are non parallel d) vec a, vec d are parallel and vec b, vec c are parallel

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=3\ a n d\ vec adot vec b=1, find the angle between.

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

Let vec a, vec b, vec c, vec d be unit vectors such that vec a * vec b + vec a * vec c + vec a * vec d + vec b * vec c + vec b * vec d + vec c * vec d = -2 Then [vec with bvec c] + [vec with bvec d] + [vec with cvec d] + [vec bvec cvec d] =

vec a, vec b, vec c, dare any four vectors then (vec a xxvec b) xx (vec c xxvec d) is a vector Perpendicular to vec a, vec b, vec c, vec d

If vec a, vec b, vec c are three non-coplanar vectors such that vec a + vec b + vec c = alphavec d and vec b + vec c + vec d = betavec a then vec a + vec b + vec c + vec d is equal to

Which of the following statement (s) is / are correct If vec a, vec b, vec c are non-coplanar and vec d is any vector, then [vec dvec bvec c] vec a + [vec dvec cvec a] vec b + [ vec dvec avec b] vec c- [vec avec bvec c] vec d = vec 0