Home
Class 12
MATHS
If vec a , vec ba n d vec c are unit co...

If ` vec a , vec ba n d vec c` are unit coplanar vectors, then the scalar triple product `[2 vec a- vec b2 vec b- vec c2 vec c- vec a]` is `0` b. `1` c. `-sqrt(3)` d. `sqrt(3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b, and vec c are three mutually orthogonal unit vectors,then the triple product [vec a+vec b+vec cvec a+vec bvec b+vec c] equals 0 b.1 or -1 c.1d.3

If vec a,vec b, and vec c are unit vectors such that vec a+vec b+vec c=0, then find the value of vec a*vec b+vec b*vec c+vec c*vec a

The scalar triple product [vec a + vec b-vec cquad vec b + vec c-vec aquad vec c + vec a-vec b is equal to

If |veca| = 1, |vec b| = 2, |vec c| = 3 and vec a +vec b +vec c = 0 , then the value of vec a * vec b +vec b. vec c +vec c* vec a equals

If vec a,vec b,vec c are unit vectors such that vec a+vec b+vec c=vec 0, then write the value of vec a*vec b+vec b*vec c+vec c*vec a

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a,vec b,vec c are non coplanar vectors,prove that the following vectors are non coplanar: 2vec a-vec b+3vec c,vec a+vec b-2vec c and vec a+vec b-3vec c

If vec a , vec b , vec c are three non coplanar vectors such that vec ddot vec a= vec ddot vec b= vec ddot vec c=0, then show that d is the null vector.

vec a xxvec b=vec b xxvec c!=0, where vec a,vec b, and vec c are coplanar vectors,then for some scalar k prove that vec a+vec c=kvec b

If vec a,vec b,vec c are non coplanar vectors,prove that the following vectors are non coplanar: vec a+2vec b+3vec c,2vec a+vec b+3vec c and vec a+vec b+vec c