Home
Class 12
MATHS
(i)(dy)/(dx)+e^(x y)+e^(y-x)=1...

`(i)(dy)/(dx)+e^(x y)+e^(y-x)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the general solutions of the following differential equations. (i) (dy)/(dx) = e^(x+y) (ii) (dy)/(dx) = e^(y-x) (iii) (dy)/(dx) = (xy+y)/(yx+x) (iv) y(1+x)dx+x(1+y)dy = 0

(x-y)(1-(dy)/(dx))=e^(x)

Solution of the equation (dy)/(dx)=e^(x-y)(1-e^y) is

Solution of the equation (dy)/(dx)=e^(x-y)(1-e^y) is

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

Solve ((dy)/(dx))=e^(x-y)(e^(x)-e^(y))

(dy)/(dx) = e^(2x-y) + x^(3) e^(-y)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0