Home
Class 11
MATHS
Let f:(1,2)vecR satisfies the inequality...

Let `f:(1,2)vecR` satisfies the inequality `(cos(2x-4)-33)/2

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(1,2)rarr R satisfies the inequality (cos(2x-4)-33)/(2)

Let f:(1,2)toR satisfy the inequality (cos(2x-4)-33)/(2)ltf(x)lt(x^(2)|4x-8|)/(x-2)AAx in(1,2). Then find lim_(xto2^(-)) f(x).

Iff:(1,2)->R satisfies the inequality (cos(2x-4)-33)/2 lt f(x) lt (x^2|4x-8|) (x-2)="" is

The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)ge(cos^(-1)x)^(2) is

The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)ge(cos^(-1)x)^(2) is

The number of integers satisfying the inequality cos^(-1)(cos((x^(2)+3)/(x^(2)+1)))+tan(tan^(-1)((7-3x^(2))/(1+x^(2))))>=2

The solution set satisfying the inequality, sqrt(21-4a-a^2)/(a+1)<=1

The solution set satisfying the inequality,(sqrt(21-4a-a^(2)))/(a+1)<=1

Let a >2 be a constant. If there are just 18 positive integers satisfying the inequality (x-a)(x-2a)(x-a^2)<0, then the value of a is ____________

Let f(x)=x+3ln(x-2)&g(x)=x+5ln(x-1) then the set of x satisfying the inequality f'(x)