Home
Class 12
MATHS
" 7.If "y=e^(x)+e^(-x)," prove that "(dy...

" 7.If "y=e^(x)+e^(-x)," prove that "(dy)/(dx)=sqrt(y^(2)-4)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)cos x, prove that (dy)/(dx)=sqrt(2)e^(x)cos(x+(pi)/(4))

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y,=e^(x)cos x, prove that (dy)/(dx),=sqrt(2)e^(x)cos(x+(pi)/(4))

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If (x-y)e^((x)/(x-y))=a, prove that (dy)/(dx)+x=2y

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2