Home
Class 12
PHYSICS
" Prove that "f(x)=(2)/(3)x^(9)-x^(6)+2x...

" Prove that "f(x)=(2)/(3)x^(9)-x^(6)+2x^(3)-3x^(2)+6x-1" is always increasing "

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that f(x)=2/3x^9-x^6+2x^3-3x^2+6x-1 is always increasing.

Prove that the function given by f(x)=2x^(3)-6x^(2)+7x is strictly increasing in R.

Prove that f(x) = 4x^3 - 6x^2 + 3x + 12 is strictly increasing function on R.

Prove that the function f(x)=x^(3)-6x^(2)+12 x-18 is increasing for all x in RR .

Prove that, lim_(xtooo)(4x^(3)-5x^(2)+6x+9)/(3x^(4)+4x^(2)-11)=0

Prove that the function f(x)=x^(3)-6x^(2)+12x-18 is increasing on R .

lim_(x rarr3)(x^(2)-9)/(x^(3)-6x^(2)+9x+1)

Show that the function : f(x) = x^3 - 3x^2 + 6x - 100 is increasing on R.

Prove that function f(x) = {-2x^(3)+3x^(2)-6x+5,xlt0 -x^(2)-x+1, xge0 is decreasing for all x.