Home
Class 11
MATHS
lim(x->9) (3 -sqrtx)/(4 -sqrt(2x-2))...

`lim_(x->9) (3 -sqrtx)/(4 -sqrt(2x-2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->9)(3-sqrt(x))/(4-sqrt(2x-2))

If f(9)=9 and f'(9)=1 then lim_(x rarr 9) (3-sqrt(f(x)))/(3-sqrtx)

If f (9) = 9, f '(9) = 1, then lim_(x rarr 9) (8-sqrt(f(x)))/(3-sqrtx) =

Evaluate the limits : lim_(x to 1) (sqrtx-x^2)/(1-sqrtx)

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to

lim_(x->1)sqrt(x+8)/sqrtx

Prove that lim_(xrarr1)(x^2-sqrtx)/(sqrtx-1)=3

Evaluate lim_(xrarra) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrtx)

lim_(x rarr4)(3x-8sqrt(x+4))/(5x-9sqrt(x)-2)