Home
Class 12
MATHS
If e^(y)(x+1)=1 ,then (dy)/(dx) is...

If `e^(y)(x+1)=1` ,then `(dy)/(dx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

If x^(2) = e^(x-y) , then (dy)/(dx) at x = 1 is ……..

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If y =( e^(x) + 1)/( e^(x)) ,then (dy)/(dx) =

If x^(y)=e^(x-y), then find (dy)/(dx)atx=1

If e^(x)siny-e^(y)cosx=1,"then"(dy)/(dx) equals -

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

If y = e^(1//x) " then " (dy)/(dx) = ?

If y=e^(sin^(-1)x) then find (dy)/(dx)