Home
Class 11
MATHS
The period of cos5 theta is (a) pi^(2)...

The period of `cos5 theta` is
(a) `pi^(2)`(b) `2 pi` (c) `2 pi/5` (d) `pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of cos(theta/2) is (A) 2 pi (B) 4 pi (C) pi (D) 6 pi

Period of sin^(2)theta is(A)pi^(2)(B)pi(C)2 pi(D)(pi)/(2)

Period of sin^2theta is- pi^2 b. pi/2 c. 2pi d. pi

The sum of all the solutions of cot theta=sin2 theta(theta!=n pi,n integer) 0<=theta<=pi, is (a) (3 pi)/(2) (b) pi (c) 3(pi)/(4) (d) 2 pi

If sin^(22)theta+cos^(42)theta=(3)/(4) where theta in[0,(pi)/(2)] then find the sum of all values of theta (a) pi (b) -pi(c)(5 pi)/(4) (d) (pi)/(2)

IF the lengths of the side of triangle are 3,5A N D7, then the largest angle of the triangle is pi/2 (b) (5pi)/6 (c) (2pi)/3 (d) (3pi)/4

If (cos theta+cos2 theta)^(3)=cos^(3)theta+cos^(3)2 theta, then the least positive value of theta is equal to (pi)/(6) (b) (pi)/(4)( c) (pi)/(3)( d) (pi)/(2)

cot^(-1)(-sqrt3)= (a) -pi/6 (b) (5pi)/6 (c) pi/3 (d) (2pi)/3

If sin theta=(1)/(2) and cos theta=-(sqrt(3))/(2), then the general value of theta is (n in Z)*( a) 2n pi+(5 pi)/(6) (b) 2n pi+(pi)/(6)2n pi+(7 pi)/(6)( d) 2n pi+(pi)/(4)

The value of sin^(-1)(cos(33pi)/5) is (3pi)/5 (b) pi/(10) (c) pi/(10) (d) (7pi)/5