Home
Class 12
MATHS
If f(x)=|(log)(10)x|,t h e na tx=1 a....

If `f(x)=|(log)_(10)x|,t h e na tx=1 ` a. `f(x)` is continuous and `f^(prime)(1)=(log)_(10)e ` b. `f(x)` is continuous and `f^(prime)(1)=-(log)_(10)e ` c. `f(x)` is continuous and `f^(prime)(1^-)=(log)_(10)e ` d. `f(x)` is continuous and `f^(prime)(1^-)=-(log)_(10)e `

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|(log)_(10)x|,t h e na tx=1 f(x) is continuous and f^(prime)(1^+)=(log)_(10)e f(x) is continuous and f^(prime)(1^+)=(log)_(10)e f(x) is continuous and f^(prime)(1^-)=(log)_(10)e f(x) is continuous and f^(prime)(1^-)=-(log)_(10)e

If f(x)=log_(x)(ln x) then f'(x) at x=e is

If f(x)=log_(x)(log_(e)x) , then the value of f'(e ) is -

f(x) = ( log (1 +ax ) - log (1 - bx))/(x) is continuous at x = 0 then f(0) =

If the function f(x)=(log(1+ax)-log(1-bx))/(x) is continuous at x=0, then f(0)=

If f^(prime)(1)=2 and y=f((log)_e x) , find (dy)/(dx) at x=e .

If f(x)=|(log)_(e)x|, then (a) f'(1^(+))=1 (b) f'(1^(-))=-1( c) f'(1)=1(d)f'(1)=-1

f: R to R is a continuous and f(x)=int_(0)^(x)f(t)dt then f(log_(e)5)= ?

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is