Home
Class 12
MATHS
If a , b , c are all positive and are p ...

If `a , b , c` are all positive and are `p t h ,q t ha n dr t h` terms of a G.P., then that `=|loga p1logb q1logc r1|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a , b , c are all positive and are pth ,qth and rth terms of a G.P., then show that =|(loga, p,1),(logb, q,1),(logc ,r,1)|=0

If a , b , c are all positive and are p t h ,q th and r t h terms of a G.P., then '\begin{vmatrix} log a & p & 1 \\ log b & q & 1 \\ log c & r & 1 \\ \end{vmatrix}=0

If a,b,c are all positive and are p-th,q-thand r-th terms of a G.P ., then show that |{:(loga,p,1),(logb,q,1),(logc,r,1):}|=0 .

If a,b,c are all positive, and are p^(th), q^(th) and r^(th) terms of a G.P., show that |("log"a,p,1),("log"b,q,1),("log"c,r,1)|=0 .

If a,b,c are positive and are the pth, qth rth terms respectively of a GP then |(loga,p,1),(logb,q,1),(logc, r,1)|=

If a,b,c are positive and are the pth, qth and rth terms respectively of a G.P., the the value of |(loga, p, 1),(logb, q, 1),(logc, r, 1)|= (A) 1 (B) pqr(loga+logb+logc) (C) 0 (D) a^pb^qc^r

If a ,b ,c are respectively the p^(t h),q^(t h)a n dr^(t h) terms of a G.P. show that (q-r)loga+(r-p)logb+(p-q)logc=0.

If a,b,c are pth, qth rth terms respectivelyy of a G.P then |(loga, p, 1),(logb, q, 1),(logc, r, 1)|=

If a , b ,and c are respectively, the pth, qth , and rth terms of a G.P., show that (q-r)loga+(r-p)logb+(p-q)logc=0.

If a , b ,a n dc are respectively, the pth, qth , and rth terms of a G.P., show that (q-r)loga+(r-p)logb+(p-q)logc=0.