Home
Class 12
MATHS
lim(x -> oo) ([2x])/x (where [x] denotes...

`lim_(x -> oo) ([2x])/x` (where [x] denotes greatest integer `<= x`)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

The lim it lim_(x rarr0)(sin[x])/(x), where [x] denotes greatest integer less than or equal to x, is equal to

Lt_(x to oo) ([x])/(x) (where[.] denotes greatest integer function )=

lim_ (x rarr oo x rarr oo in r) ([2x]) / (x) (where [x] denotes greatest integer <= x)

Solve (i) lim_(xtooo)tan^(-1)x (ii) lim_(xto-oo)tan^(-1)x (where [.] denotes greatest integer function)

Solve (i) lim_(xtooo)tan^(-1)x (ii) lim_(xto-oo)tan^(-1)x (where [.] denotes greatest integer function)

lim_(x->oo)[x^2/(sinxtanx)],where [.] denotes greatest integer function.

Solve (i) lim_(xto0)cotx (ii) lim_(xto+oo)cot^(-1)x (where [.] denotes greatest integer function)

Solve (i) lim_(xto0)cotx (ii) lim_(xto+oo)cot^(-1)x (where [.] denotes greatest integer function)

Solve (i) lim_(xto0)cotx (ii) lim_(xto+oo)cot^(-1)x (where [.] denotes greatest integer function)