Home
Class 12
MATHS
lim(x->0)(cosx+asinb x)^(1/x)...

`lim_(x->0)(cosx+asinb x)^(1/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->0)(cosx)^(1/sin x)

(lim)_(x->0)(cosx)/(pi-x)

lim_(x->0)(1+(asinb x)/(cosx))^(1/x), where a,b are non zero constants is equal to :

lim_(x->0)(1+(asinb x)/(cosx))^(1/x), where a,b are non zero constants is equal to :

lim_(x->0)(1/x)^(1-cosx)

If and n are positive integers, then lim_(x->0)((cosx)^(1/ m)-(cosx)^(1/ n))/(x^2) equal to :

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to