Home
Class 11
MATHS
If the line 2x-2y+lambda=0 is a secant ...

If the line `2x-2y+lambda=0` is a secant to the parabola `x^2=-8y ,` then `lambda` lies in the interval `(4,oo)` (b) `(-oo,4)` (c) `(0,4)` (d) `Non eoft h e s e`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line 2x-2y+lambda=0 is a secant to the parabola x^(2)=-8y, then lambda lies in the interval (4,oo)(b)(-oo,4)(c)(0,4)(d)Noneofthese

If 2x+y+lambda=0 is a normal to the parabola y^2=-8x , then lambda is 12 (b) -12 (c) 24 (d) -24

If 2x+y+lambda=0 is a normal to the parabola y^2=-8x , then lambda is (a)12 (b) -12 (c) 24 (d) -24

If 2x+y+lambda=0 is a normal to the parabola y^2=-8x , then lambda is (a)12 (b) -12 (c) 24 (d) -24

If 2x+y+lambda=0 is a normal to the parabola y^2=-8x , then lambda is (a) 12 (b) -12 (c) 24 (d) -24

If 2x+y+lambda=0 is a normal to the parabola y^(2)=-8x, then lambda is 12 (b) -12 (c) 24 (d) -24

The line 4y-3x+lambda=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 then lambda=

The line 4y - 3x + lambda =0 touches the circle x^2 + y^2 - 4x - 8y - 5 = 0 then lambda=