Home
Class 12
MATHS
If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5p...

If `(tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8` then `x` equals

Text Solution

Verified by Experts

`(tan^(-1) x)^(2) + (cot^(-1) x)^(2) = (5pi^(2))/(8)`
`rArr (tan^(-1)x + cot^(-1) x)^(2) 2 tan^(-1) x ((pi)/(2) - tan^(-1) x) = (5pi^(2))/(8)`
`rArr (pi^(2))/(4) - 2 xx (pi)/(2) tan^(-1) x + 2 (tan^(-1) x)^(2) = (5pi^(2))/(8)`
`rArr 2(tan^(-1) x)^(2) - pi tan^(-1) x - (3pi^(2))/(8) = 0`
`rArr tan^(-1) x = -(pi)/(4), (3pi)/(4)`
`rArr tan^(-1) = -(pi)/(4) " " ( :' tan^(-1) x in (-(pi)/(2), (pi)/(2)))`
`:. x = -1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5 pi^2) /8 find x.

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5 pi^2) /8 find x.

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5 pi^2) /8 find x.

If (tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5 pi^(2))/(8) then x equals:

If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

If (tan^-1x)^2 + (cot^-1x)^2 =(5 pi^2)/8 then x equals :