Home
Class 12
MATHS
If vec a xx vec b and vec c xx vec d are...

If `vec a xx vec b and vec c xx vec d `are perpendicular satisfying `vec a.vec c=lambda,vec b.vec d=lambda,(lambda>.0),vec a.vec d=4, vec b.vec c=9` then `lambda` equal to:-

Promotional Banner

Similar Questions

Explore conceptually related problems

[[[(2vec a + vec b) vec cvec d] = lambda [vec with cvec d] + mu [vec bvec cvec d] hen lambda + mu is equal to

(vec a.vec b)vec c

If a, b and c are non-coplanar vectors and d=lambda vec a+mu vec b+nu vec c , then lambda is equal to

If vec a=3hat i+hat j and vec b=hat i+2hat j+hat k and vec c satisfy the conditions vec a times vec c=vec b+lambda vec a and vec a*vec c=0 then lambda is equal to

Prove that (vec a × vec b).(vec c × vec d) = [[vec a.vec c,vec a.vec d],[vec b.vec c,vec b.vec d]] .

If vec a = i+j+k, vec b = i+j, vec c = i and (vec a xx vec b) xx vec c = lambda vec a + mu vec b , then lambda + mu

If vec a, vec b and vec c are unit vectors satisfying the condition vec a + vec b + vec c = 0 then show that vec a.vec b + vec a.vec c + vec b * vec c = - (3) / (2)

If vec a, vec b and vec c are unit vectors satisfying the condition vec a + vec b + vec c = 0 then shoe that vec a.vec b + vec a.vec c + vec b * vec c = - (3) / (2)

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b