Home
Class 12
MATHS
int(x+1)dy If y=6x^2 (A) 2x^3+6x^2+C (B)...

`int(x+1)dy` If `y=6x^2` (A) `2x^3+6x^2+C` (B) `4x^3+6x^2+C` (C) `4x^3+4x^2+C` (D) `4x^3-6x^2+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

Subtract: (i) 5a + 7b - 2c from 3a - 7b + 4c (ii) a - 2b - 3c from -2a + 5b - 4c (iii) 5x^(2) - 3xy + y^(2) from 7x^(2) - 2xy - 4y^(2) (iv) 6x^(3) - 7x^(2) + 5x - 3 from 4 - 5x + 6x^(2) - 8x^(3) (v) x^(3) + 2x^(2) y + 6xy^(2) - y^(3) from y^(3) - 3xy^(2) - 4x^(2) (vi) -11 x^(2) y^(2) + 7xy - 6 from 9x^(2) y^(2) - 6xy + 9 (vii) -2a + b + 6d from 5a - 2b - 3c

Add: (i) 3a - 2b + 5c, 2a + 5b - 7c, -a - b + c (ii) 8a - 6ab + 5b, -6a - ab - 8b, -4a + 2ab + 3b (iii) 2x^(3) - 3x^(2) + 7x - 8, -5x^(3) + 2x^(2) - 4x + 1, 3 - 6x + 5x^(2) - x^(3) (iv) 2x^(2) - 8xy + 7y^(2) - 8xy^(2), 2xy^(2) + 6xy - y^(2) + 3x^(2), 4y^(2) - xy - x^(2) + xy^(2) (v) x^(3) + y^(3) - z^(3) + 3xyz, - x^(3) + y^(3) + z^(3) - 6xyz, - x^(3) - y^(3) - z^(3) - 8xyz (vi) 2 + x - x^(2) + 6x^(3). -6 - 2x + 4x^(2) - 3x^(3). 2 + x^(2). 3 - x^(3) + 4x - 2x^(2)

Factorise : 3x^5 - 6x^4 - 2x^3 + 4x^2 + x-2

y-1=m_1(x-3) and y - 3 = m_2(x - 1) are two family of straight lines, at right angled to each other. The locus of their point of intersection is: (A) x^2 + y^2 - 2x - 6y + 10 = 0 (B) x^2 + y^2 - 4x - 4y +6 = 0 (C) x^2 + y^2 - 2x - 6y + 6 = 0 (D) x^2 + y^2 - 4x - by - 6 = 0

If A = 3y^(2) + 4x - 5x^(2), B = x^(2) -3 y^(2) and C = 6x^(2) - 4xy then find B - C

int (2x ^ (3) + 3x ^ (2) + 4x + 5) / (2x + 1) dx equls to: (A) (x ^ (3)) / (2) + (x ^ (2)) / (2) +3 (x) / (2) + (7) / (4) ln (2x + 1) + C (B) 5 (x ^ (3)) / (2) + 6 (x) / (2) + (7) / (4) ln (2x + 1) + C (C) 3 (x ^ (3)) / (2) + 3 (x ^ (2)) / (2) + (7 ) / (4) ln (2x + 1) + C (D) (x ^ (2)) / (2) + 3 (x) / (2) + (7) / (4) ln (2x + 1) + C

If A = 3y^(2) + 4x - 5x^(2), B = x^(2) -3 y^(2) and C = 6x^(2) - 2xy then find B + C

If A = 3y^(2) + 4x - 2x^(2), B = 6x^(2) - 3y^(2) and C = 2x^(2) - 2xy then find A + B

Find the values of "a" and "b" given that p(x) = (x^2 + 3x+2) (x^2 - 4x+a) g(x) =(x^2 - 6x+9) (x^2 + 4x+b) and their G.C.D. is (x+2) (x-3)