Home
Class 12
MATHS
The value of lim(x->0)((e^x+(2e)^x+(3e)...

The value of `lim_(x->0)((e^x+(2e)^x+(3e)^x+ .........+(n e)^x)/n)^(pi/x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->0)(e^(x^2)-e^x+x)/(1-cos2x) is

Find the value of lim_(xrarr0)(e^x-e^(-x))/x

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(x to 0)(e^(x)-log(e+ex))/(x) is -

The value of lim_(x rarr oo)(x^(n))/(e^(x))

Evaluate : lim_(x to 0) (e^(x) -e^(x))/x

find lim_(x->0) (e^(x+3)-e^3)/x

Evaluate : lim_(x rarr 0) (e^(3x)-e^(2x))/x .

The value of Lim_(xto0) ((e)/(4x)-(e)/(2x(e^(ex)+1))) equals