Home
Class 9
MATHS
(1)/(sqrt(7)+sqrt(3)-sqrt(2))...

(1)/(sqrt(7)+sqrt(3)-sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(2)+sqrt(3)+sqrt(7)-(1)/(sqrt(2)+sqrt(3)+sqrt(7))=?

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)+sqrt(6)-sqrt(13)) (ii) (3)/(sqrt(3)+sqrt(5) -1) (iii) (4)/(2-sqrt(3)+sqrt(7))

(1)/(sqrt(2)+sqrt(5)-sqrt(7))

Rationalise the denominators of the following : i) (1)/(3+sqrt(2)) ii) (1)/(sqrt(7)-sqrt(6)) iii) (1)/(sqrt(7)) iv) (sqrt(6))/(sqrt(3)-sqrt(2))

(sqrt(7)+sqrt(3))/(sqrt(7)-sqrt(3))-(sqrt(7)-sqrt(3))/(sqrt(7)+sqrt(3))

Rationailise the denominatios (1)/(sqrt(7)+sqrt(2))-(sqrt(7)+sqrt(2))/(sqrt(7)-sqrt(2))

(2sqrt(7))/(sqrt(5)-sqrt(3))

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

([(sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)) (ii) (sqrt(5))/(2sqrt(3)) (iii) (1)/(2+ sqrt(3)) (1)/(sqrt(3)) (v) (1)/((5+3sqrt(2)) (vi) (1)/(sqrt(7) - sqrt(6)) (vi) (1)/(sqrt(7) - sqrt(6)) (viii) (1+ sqrt(2))/(2-sqrt(2)) (ix) (3-2sqrt(2))/(3+2sqrt(2))