Home
Class 11
MATHS
" 8.If "e^(y)(x+1)=1" then "(d^(2)y)/(dx...

" 8.If "e^(y)(x+1)=1" then "(d^(2)y)/(dx^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y)(x+1)=1 . Show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

If e^(y) (x+1) =1 show that (d^(2) y)/( dx^(2)) = ((dy)/(dx))^(2)

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If e^(y)(x + 1) = 1 show that (d^2 y)/(dx^2) = ((dy)/(dx))^(2) .

If y=x^(2)e^(x),"show that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2(x+1)e^(x)=0