Home
Class 12
MATHS
" d5."(1)/(x^(4)-1)...

" d5."(1)/(x^(4)-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(3)=(1)/(x^(3))=14, then x-(1)/(x)=5 (b) 4(d)3(d)2

Differentiate. cos^(-1)((x^4-1)/(x^4+1))

int(x^(9))/((4x^(2)+1)^(6))dx is equal to (A) (1)/(5x)(4+(1)/(x^(2)))^(-5)+c(B)(1)/(5)(4+(1)/(x^(2)))^(-5)+c(C)(1)/(10x)(4x+1)^(-5)+c (D) (1)/(10)((1)/(x^(2))+4)^(-5)+c

If log_(10)[(1)/(2^(x)+x-1)]=x[log_(10)5-1], then x=4 (b) 3(c)2(d)1

int(x^(9)dx)/((4x^(2)+1)^(9)) isequa

The maximum value of f(x)=(x)/(4-x+x^(2)) on [-1,1] is (a) (1)/(4)(b)-(1)/(3)(c)(1)/(6)(d)(1)/(5)

int_(0)^(1)1/((x^(2)+16)(x^(2)+25))dx is equal to a) 1/(5)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] b) 1/(9)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] c) 1/(4)[1/(4)"tan"^(-1)(1/(4))-1/(5)"tan"^(-1)(1/(5))] d) 1/(9)[1/(5)"tan"^(-1)(1/(4))-1/(4)"tan"^(-1)(1/(5))]

(3x^(2)+x+1)/(x-1)^(4)=a/(x-1)+b/(x-1)^(2)+c/(x-1)^(3)+d/(x-1)^(4) rArr [{:(a,b), (c, d):}]=

(3x^(2)+x+1)/(x-1)^(4)=a/(x-1)+b/(x-1)^(2)+c/(x-1)^(3)+d/(x-1)^(4) rArr [{:(a,b), (c, d):}]=