Home
Class 11
MATHS
[" Q."128" .Let "f:R rarr R" be a positi...

[" Q."128" .Let "f:R rarr R" be a positive "],[" incersing function with "],[qquad [lim_(x rarr oo)(f(3x))/(f(x))=1." Then "lim_(x rarr oo)(f(2x))/(f(x))],[[" (a) "(2)/(3)," (b) "(3)/(2)," (c) "3," (d) "1]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1 then lim_(x rarr oo)(f(2x))/(f(x))=

lim_(x rarr oo) (1+f(x))^(1/f(x))

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1. Then lim_(x rarr oo)(f(2x))/(f(x))=(1)(2)/(3)(2)(3)/(2)(3)3(4)1

Let f:R to R be a positive increasing function with lim_(x to oo) (f(3x))/(f(x))=1 . Then lim_(x to oo) (f(2x))/(f(x))=

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

Let f: R rarr R be a positive increasing function with underset(xrarrinfty)lim(f(3x))/(f(x))=1, then underset(xrarrinfty)lim(f(2x))/(f(x)) =

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is