Home
Class 12
MATHS
" (ii) "P(A)nn P(B)=P(A nn B)...

" (ii) "P(A)nn P(B)=P(A nn B)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A={a,b},B={b,c} Find P(A), P(B), P(A) uu P(B) , P(A) nn P(B) show that P(A) nn P(B) = P(A nn B)

If A is any set and P(A) is its power set,then which of the following is/are correct? 1.P(A)nn P(B)=P(A nn B) II.P(A)uu P(B)=P(A uu B) Select the correct answer using the code given below.

If A and B are two events, then which of the following does not represent the probability that exactly one of A ,B occurs is. (a) P(A) + P(B) - P(A nn B) (b) P(A nn B') + P(A' nn B) (c) P(A') + P(B') - 2P(A' nn B') (d) P(A) + P(B) -2 P(A nn B)

If A and B are two events, then which of the following dies not represent the probability of at most one of A ,B occurs. (a) P(A) + P(B) - P(A nn B) (b) P(A nn B') + P(A' nn B) (c) P(A') + P(B') - 2P(A' nn B') (d) P(A) + P(B) -2 P(A nn B)

Prove that P(A uu B) = P(A) + P(B) - P(A nn B)

For any two events A and B, show that, P(A uu B) = P(A) + P(B) - P(A nn B) .

1) P(A nn B)=P(A)-P(A nn B')2)P(A nn B)=P(A)*P(B) Which one is true and why?

For any two sets A and B, prove that P(A nn B)=P(A) nn P(B)

For any sets A and B, prove that : P (A nn B) =P (A) nn P (B) .