Home
Class 13
MATHS
" Show that "b^(2)c^(2)+c^(2)a^(2)+a^(2)...

" Show that "b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)>abc(a+b+c)," where "a,b,c" are different positive integers."

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)>abc(a+b+c), where a,b,c are different positivine integers.

prove that b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)>=abc(a+b+c)

Prove that b^(2)c^(2) + c^(2)a^(2) + a^(2) b^(2) gt abc (a+b+c)

Prove that b^(2)c^(2)+c^(2)a^(2)+a^(2)+b^(2)>abc xx(a+b+c)(a,b,c>0)

Show that a^(2)(1+b^(2))+b^(2)(1+c^(2))+c^(2)(1+a^(2))gt abc

Show that a^(2)(1+b^(2))+b^(2)(1+c^(2))+c^(2)(1+a^(2))gt abc

log_(2)(1+(1)/(a))+log_(2)(1+(1)/(b))+log_(2)(1+(1)/(c))=2 where a,b,c are three different positive integers, then that log_(e)(a+b+c)=log_(e)a+log_(e)b+log_(e)c or prove that a=1,b=2,c=3.

If 49392=a^(4)b^(2)c^(3), find the value of a,b and c, where a,b and c are different positive primes.

The number of (a, b, c), where a, b, c are positive integers such that abc = 30, is