Home
Class 12
MATHS
The value of difinite integral int(0)^(1...

The value of difinite integral `int_(0)^(1)=(dx)/(sqrt((x+1)^(3)(3x+1)))` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(3)(dx)/(sqrt(x+1)+sqrt(5x+1)) is

The value of the integral int_(0)^(3) (dx)/(sqrt(x+1)+sqrt(5x+1)) is

The value of the definte integrale int_(-1)^(1)(dx)/(1+x^(3)+sqrt(1+x^(6))) equals

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals