Home
Class 11
MATHS
GIven the matrix A=[(0,1,0),(0,0,1),(1,...

GIven the matrix `A=[(0,1,0),(0,0,1),(1,2,-1)]`.The constants `p, q, r` sich that `A^3 = pA^2 +qA+ rl` , then

Promotional Banner

Similar Questions

Explore conceptually related problems

The matrix [(3,0,0),(0,2,0),(0,0,1)] is

The matrix |(1,0,0),(2,1,0),(3,1,1)| is

If A =[{:(0,1,0),(0,0,1),(p,q,r):}] , show that ltbargt A^(3)= pI+qA+rA^(2)

If A =[{:(0,1,0),(0,0,1),(p,q,r):}] , show that ltbargt A^(3)= pI+qA+rA^(2)

If A =[{:(0,1,0),(0,0,1),(p,q,r):}] , show that ltbargt A^(3)= pI+qA+rA^(2)

If A =[{:(0,1,0),(0,0,1),(p,q,r):}] , show that A^(3)= pI+qA+rA^(2)

If A = [(1,0),(0,1)] and B = [(0,1),(-1,0)] , show that (pA + qB) (pA - qB) = (p^2 + q^2)A

Find the rank of matrix.A= [[3,1,2,0],[1,0,-1,0],[2,1,3,0]]

Find the transpose of the matrix : {:[(1,0,0),(-1,1//3,0),(3,2//3,-1)]

Find the inverse of each of the matrices given below : Obtain the inverse of the matrics [(1,p,0),(0,1,p),(0,0,1)] and [(1,0,0),(q,1,0),(0,q,1)] . And, hence find the inverse of the matrix [((1+pq),p,0),(q,(1+pq),p),(0,q,1)] . Let the first two matrices be A and B. Then, the third matrix is AB. Now, (AB)^(-1)=(B^(-1)A^(-1))