Home
Class 12
MATHS
(1)(x^(4)+1)/(x^(2)+1)+tan^(-1)x...

(1)(x^(4)+1)/(x^(2)+1)+tan^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-4)^(4) [ tan^(-1)((x^(2))/( x^(4)+1)) +tan^(-1) ((x^(4)+1)/( x^(2))) ] dx is

[ If xgt0 then which of the following is true 1) tan^(-1)xgt(x)/(1+x^(2)), 2) tan^(-1)x=(x)/(1+x^(2)) 3) tan^(-1)xlt(x)/(1+x^(2)), 4) tan^(-1)x!=(x)/(1+x^(2))]

int(x^(2)-1)/((x^(4)+3x^(2)+1)tan^(-1)(x+(1)/(x)))dx=

Evaluate: int(x^(2)-1)/((x^(4)+3x^(2)+1)tan^(-1)(x+(1)/(x)))dx

tan ^ (-1) (x + (2) / (x))-tan ^ (-1) ((4) / (x)) = tan ^ (-1) (x- (2) / (x))

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/4 then x=

tan ^(-1) ""(x-1)/(x-2) + tan ^(-1) ""(x+1)/(x+2)=(pi)/(4)

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

A solution of equation tan ^(-1) ""(x-1)/(x-2) + tan ^(-1) ""(x+1)/(x+2)=(pi)/(4)