Home
Class 12
MATHS
sqrt(1+sin(x)/(2))...

sqrt(1+sin(x)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( Prove that )sqrt(1+sec x)dx=sin^(-1)(sqrt(2)sin((x)/(2)))

The value of intsqrt(1+secx)dx is equal to (A) 2sin^-1(sqrt(2)sin(x/2))+c (B) 2cos^-1(sqrt(2)sin(x/2))+c (C) 2sin^-1(sqrt(2)cos(x/2))+c (D) none of these

The value of intsqrt(1+secx)dx is equal to (A) 2sin^-1(sqrt(2)sin(x/2))+c (B) 2cos^-1(sqrt(2)sin(x/2))+c (C) 2sin^-1(sqrt(2)cos(x/2))+c (D) none of these

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

Prove that : cot^(-1)(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))=(x)/(2),0

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2),x(0,(pi)/(4))

Prove the following: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x epsilon(0,(pi)/(4))

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2);x in(0,(pi)/(4))